Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin.
نویسندگان
چکیده
Asiatic acid and corosolic acid are two natural products identified as biofilm inhibitors in a biofilm inhibition assay. We evaluated the activities of these two compounds on Pseudomonas aeruginosa biofilms grown in rotating disk reactors (RDRs) in combination with tobramycin and ciprofloxacin. To determine the ruggedness of our systems, the antibiotic susceptibilities of these biofilms were assessed with tobramycin and ciprofloxacin. The biofilm bacteria produced in the RDR were shown to display remarkable tolerance to 10 mug/ml of ciprofloxacin, thus mimicking the tolerance observed in recalcitrant bacterial infections. These studies further demonstrate that a nonmucoid strain of P. aeruginosa can form a biofilm that tolerates ciprofloxacin at clinically relevant concentrations. Neither asiatic acid nor corosolic acid reduced the viable cell density of P. aeruginosa biofilms. However, both compounds increased the susceptibility of biofilm bacteria to subsequent treatment with tobramycin, suggesting asiatic acid and corosolic acid to be compounds that potentiate the activity of antibiotics. A similar statistical interaction was observed between ciprofloxacin and subsequent treatment with tobramycin.
منابع مشابه
The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to colistin by repressing PhoPQ.
While the MerR-like transcriptional regulator BrlR has been demonstrated to contribute to Pseudomonas aeruginosa biofilm tolerance to antimicrobial agents known as multidrug efflux pump substrates, the role of BrlR in resistance to cationic antimicrobial peptides (CAP), which is based on reduced outer membrane susceptibility, is not known. Here, we demonstrate that inactivation of brlR coincide...
متن کاملMannitol Does Not Enhance Tobramycin Killing of Pseudomonas aeruginosa in a Cystic Fibrosis Model System of Biofilm Formation
Cystic Fibrosis (CF) is a human genetic disease that results in the accumulation of thick, sticky mucus in the airways, which results in chronic, life-long bacterial biofilm infections that are difficult to clear with antibiotics. Pseudomonas aeruginosa lung infection is correlated with worsening lung disease and P. aeruginosa transitions to an antibiotic tolerant state during chronic infection...
متن کاملDetection of Multidrug Resistant (MDR) and Extremely Drug Resistant (XDR) P. Aeruginosa Isolated from Patients in Tehran, Iran
Background: This study was done to detect multidrug resistant (MDR) and extremely drug resistant (XDR) of Pseudomonas aeruginosa among strains isolated from patients in Tehran, Iran, due to importance of these phenotypes in treatment of human infections. Methods: Eighty eightP. aeruginosa were isolated from patients in Tehran, Iran, and identified by routine...
متن کاملMeloxicam inhibits biofilm formation and enhances antimicrobial agents efficacy by Pseudomonas aeruginosa
Microbial biofilms are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Bacterial cells in biofilm are 10~1,000-fold more resistant to antimicrobials than the planktonic cells. Burgeoning antibiotic resistance in Pseudomonas aeruginosa biofilm has necessitated the development of antimicrobial agents. Here, we have investigated the antibiofilm effe...
متن کاملBiofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials.
Biofilms are considered to be highly resistant to antimicrobial agents. Strictly speaking, this is not the case-biofilms do not grow in the presence of antimicrobials any better than do planktonic cells. Biofilms are indeed highly resistant to killing by bactericidal antimicrobials, compared to logarithmic-phase planktonic cells, and therefore exhibit tolerance. It is assumed that biofilms are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 51 5 شماره
صفحات -
تاریخ انتشار 2007